Form A2-3: Compliance Verification Report for Type A Inverter Connected Power Generating Modules

This form should be used by the **Manufacturer** to demonstrate and declare compliance with the requirements of EREC G99. The form can be used in a variety of ways as detailed below:

1. To obtain Fully Type Tested status (≤ 50 kW)

The **Manufacturer** can use this form to obtain **Fully Type Tested** status for a **Power Generating Module** by registering this completed form with the Energy Networks Association (ENA) Type Test Verification Report Register. Tests 1 – 15 must all be completed and compliant for the **Power Generating Module** to be classified as **Fully Type Tested**.

2. To obtain Type Tested status for a product

This form can be used by the **Manufacturer** to obtain **Type Tested** status for a product which is used in a **Power Generating Module** by registering this form with the relevant parts completed with the Energy Networks Association (ENA) Type Test Verification Report Register.

Where the **Manufacturer** is seeking to obtain **Type Tested** status for an **Interface Protection** device the appropriate section of Form A2-4 should be used.

3. One-off Installation

This form can be used by the **Manufacturer** or **Installer** to confirm that the **Power Generating Module** has been tested to satisfy all or part of the requirements of this EREC G99. This form shall be submitted to the **DNO** as part of the application.

A combination of (2) and (3) can be used as required, together with Form A2-4 where compliance of the

Interface Protection is to be demonstrated on site.

Note:

Within this Form A2-3 the term **Power Park Module** will be used but its meaning can be interpreted within Form A2-3 to mean **Power Park Module**, **Generating Unit or Inverter** as appropriate for the context.

However, note that compliance shall be demonstrated at the Power Park Module level.

If the **Power Generating Module** is **Fully Type Tested** and registered with the Energy Networks Association (ENA) Type Test Verification Report Register, the Installation Document (Form A3-1 or A3-2) should include the **Manufacturer's** reference number (the system reference), and this form does not need to be submitted.

Where the **Power Generating Module** is not registered with the ENA Type Test Verification Report Register or is not **Fully Type Tested** this form (all or in parts as applicable) needs to be completed and provided to the **DNO**, to confirm that the **Power Generating Module** has been tested to satisfy all or part of the requirements of this EREC G99.

Man	ufacturer's reference number	ERD-CR202305010				
		S6-EH3P5K-H-EU,S6-EH3P6K-H-EU, S6-EH3P8K-H-EU, S6-EH3P10K-H-EU, S6-EH3P5K2-H, S6-EH3P6K2-H, S6-EH3P8K2-H, S6-EH3P10K2-H, S6-EH3P10K-H-EU-PRO, S6-EH3P5K-H-EU-OD, S6-EH3P6K-H-EU-OD, S6-EH3P8K-H- EU-OD, S6-EH3P10K-H-EU-OD, S6-EH3P5K2-H-OD, S6- EH3P6K2-H-OD, S6-EH3P8K2-H-OD, S6-EH3P10K2-H-OD				
	Manufacturer name	Ginlong Technologies Co., Ltd.				
	Address	No. 57 Jintong Road, Seafront (Binhai) Industrial Park, Xiangshan, Ningbo, Zhejiang,315712,P.R.China				
Tel	(+86) 574 6580 3377	Web site	www.ginlong.com			

ENA Engine	ering Recommendation G99	Type A
E:mail		ruyi.Pan@ginlong.com
	Registered Capacity	5.0/6.0/8.0/10 kW
Energy	y storage capacity for Electricity Storage devices	kWh

There are four options for Testing: (1) **Fully Type Tested**($\leq 50 \text{ kW}$), (2) **Type Tested** product, (3) one-off installation, (4) tested on site at time of commissioning. The check box below indicates which tests in this Form have been completed for each of the options. With the exception of **Fully Type Tested PGM**s tests may be carried out at the time of commissioning (Form A4). **Type Tested** status is suitable for devices > 50 kW where the power quality aspects need consideration on a site by site basis in accordance with EREC G5 and EREC P28.

Insert Document reference(s) for Manufacturers' Information

Tested option:	1. Fully Type Tested	2. Type Tested product	3. One-off Manufacturers' Info.	4. Tested on Site at time of Commissioning
Fully Type Tested - all tests detailed below completed and evidence attached to this submission	V	N/A	N/A	N/A
1. Operating Range		√		
2. PQ – Harmonics		\checkmark		
3. PQ – Voltage Fluctuation and Flicker		√		
4. PQ – DC Injection (Power Park Module s only)		√		
5. Power Factor (PF)		√		
6. Frequency protection trip and ride through tests	N/A	V		
7. Voltage protection trip and ride through tests		$\sqrt{}$		
8. Protection – Loss of Mains Test, Vector Shift and RoCoF Stability Test		√		
9. LFSM-O Test		\checkmark		
10. Protection – Reconnection Timer		√		
11. Fault Level Contribution		√		

There are four options for Testing: (1) **Fully Type Tested**(≤ 50 kW), (2) **Type Tested** product, (3) one-off installation, (4) tested on site at time of commissioning. The check box below indicates which tests in this Form have been completed for each of the options. With the exception of **Fully Type Tested PGM**s tests may be carried out at the time of commissioning (Form A4). **Type Tested** status is suitable for devices > 50 kW where the power quality aspects need consideration on a site by site basis in accordance with EREC G5 and EREC P28.

Insert Document reference(s) for Manufacturers' Information

Tested option:	1. Fully Type Tested	2. Type Tested product	3. One-off Manufacturers' Info.	4. Tested on Site at time of Commissioning
12. Self-monitoring Solid State Switch		N/A		
13. Wiring functional tests if required by para 15.2.1 (attach relevant schedule of tests)		N/A		
14. Logic Interface (input port)		$\sqrt{}$		
15. Cyber security		√		

Manufacturer compliance declaration. - I certify that all products supplied by the company with the above **Type Tested Manufacturer**'s reference number will be manufactured and tested to ensure that they perform as stated in this document, prior to shipment to site and that no site **Modification**s are required to ensure that the product meets all the requirements of EREC G99.

Signed	4.Apr.2023	On behalf of	Ginlong Technologies Co., Ltd.
--------	------------	--------------	--------------------------------

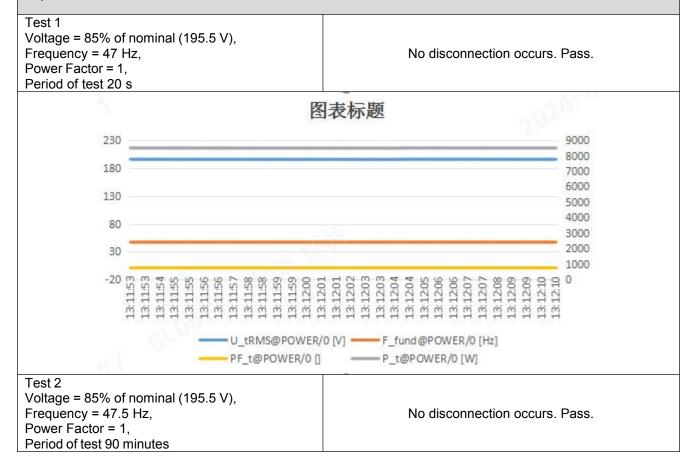
Note that testing can be done by the Manufacturer of an individual component or by an external test house.

Where parts of the testing are carried out by persons or organisations other than the Manufacturer then that person or organisation shall keep copies of all test records and results supplied to them to verify that the testing has been carried out by people with sufficient technical competency to carry out the tests.

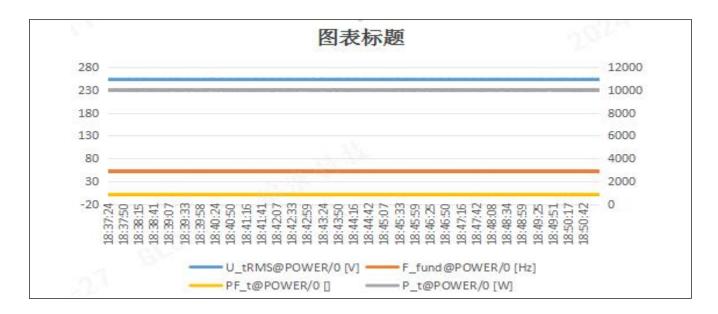
A2-3 Compliance Verification Report –Tests for Type A Inverter Connected Power Generating Modules – test record

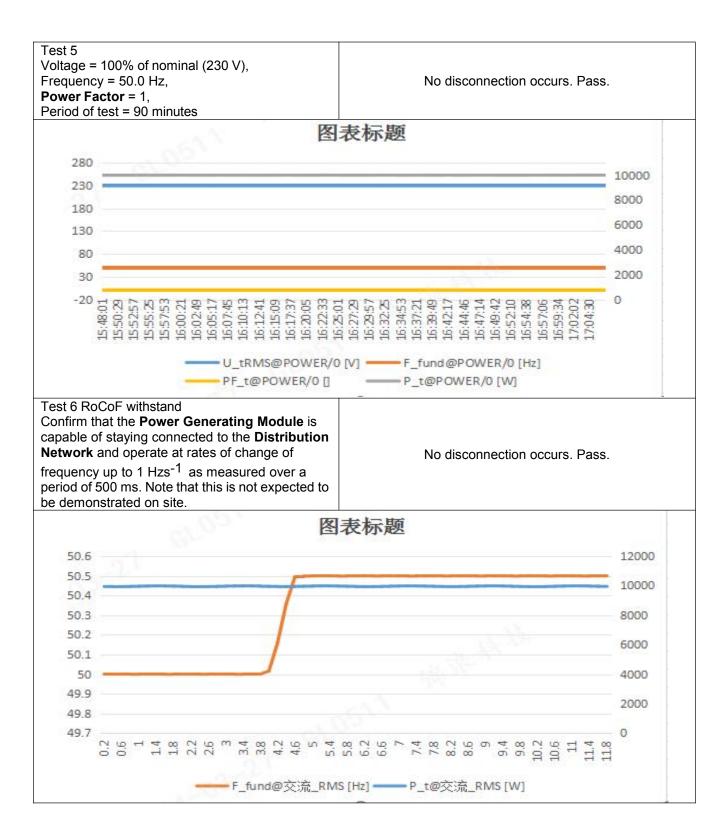
1. Operating Range: Tests should be carried with the Power Generating Module operating at Registered Capacity and connected to a suitable test supply or grid simulation set. The power supplied by the primary source shall be kept stable within \pm 5 % of the apparent power value set for the entire duration of each test sequence.

Frequency, voltage and **Active Power** measurements at the output terminals of the **Power Generating Module** shall be recorded every second. The tests will verify that the **Power Generating Module** can operate within the required ranges for the specified period of time.


The Interface Protection shall be disabled during the tests.

In case of a PV Power Park Module the PV primary source may be replaced by a DC source.


In case of a full converter **Power Park Module** (e.g wind) the primary source and the prime mover **Inverter**/rectifier may be replaced by a DC source.


Pass or failure of the test should be indicated in the fields below (right hand side), for example with the statement "Pass", "No disconnection occurs", etc. Graphical evidence is preferred.

Note that the value of voltage stated in brackets assumes a **LV** connection. This should be adjusted for **HV** as required.

2. Power Quality - Harmonics:

For **Power Generating Modules** of **Registered Capacity** of less than 75 A per phase (ie 50 kW) the test requirements are specified in Annex A.7.1.5. These tests should be carried out as specified in BS EN 61000-3-12, and measurements for the $2^{\text{nd}} - 13^{\text{th}}$ harmonics should be provided. The results need to comply with the limits of Table 2 of BS EN 61000-3-12 for single phase equipment and Table 3 of BS EN 610000-3-12 for three phase equipment. For three phase **Power Generating Modules**, measurements for all phases should be provided.

For **Power Generating Modules** of **Registered Capacity** of greater than 75 A per phase (ie 50 kW) the installation shall be designed in accordance with EREC G5.

The rating of the **Power Generating Module** (per phase) should be provided below, and the Total Harmonic Distortion (THD) and Partial Weighted Harmonic Distortion (PWHD) should be provided at the bottom of this section.

Power Gen	Power Generating Module tested to BS EN 61000-3-12											
Power Ge	nerating N phase (iting per	3.3	33	kVA	Harmonic % = Measured Value (A) x 23/rating per phase (kVA)					
(for single	phase me	nase measurements measurements, only columns below). Three										
Harmonic												
	Measured Value (MV) in Amps			Measured Value (MV) in %			Limit in BS EN 61000-3-12					
	L1	L2	L3	L1	L2	L3	1 phase	3 phase				
2	0.060	0.042	0.059	0.414	0.290	0.407	8%	8%				
3	0.022	0.016	0.029	0.152	0.110	0.200	21.6%	Not stated				

4	0.012	0.007	0.017	0.083	0.048	0.117	4%	4%
5	0.128	0.129	0.122	0.883	0.890	0.842	10.7%	10.7%
6	0.010	0.007	0.011	0.069	0.048	0.076	2.67%	2.67%
7	0.061	0.059	0.061	0.421	0.407	0.421	7.2%	7.2%
8	0.006	0.005	0.007	0.041	0.035	0.048	2%	2%
9	0.005	0.003	0.007	0.035	0.021	0.048	3.8%	Not stated
10	0.006	0.005	0.009	0.041	0.035	0.062	1.6%	1.6%
11	0.042	0.044	0.041	0.290	0.304	0.283	3.1%	3.1%
12	0.009	0.004	0.008	0.062	0.028	0.055	1.33%	1.33%
13	0.03	0.029	0.029	0.207	0.200	0.200	2%	2%
14	0.004	0.001	0.003	0.028	0.010	0.021		
15	0.002	0.002	0.002	0.015	0.016	0.013		
16	0.001	0.003	0.002	0.009	0.019	0.015		
17	0.021	0.021	0.021	0.144	0.146	0.146		
18	0.001	0.002	0.003	0.008	0.017	0.018		
19	0.016	0.016	0.016	0.111	0.109	0.109		
20	0.004	0.002	0.003	0.026	0.017	0.022		
21	0.002	0.002	0.002	0.013	0.014	0.011		
22	0.003	0.005	0.004	0.022	0.032	0.024		
23	0.021	0.020	0.021	0.145	0.141	0.146		
24	0.003	0.001	0.003	0.019	0.008	0.020		
25	0.022	0.023	0.022	0.149	0.156	0.152		
26	0.005	0.005	0.004	0.033	0.036	0.026		
27	0.003	0.003	0.002	0.018	0.019	0.016		
28	0.004	0.006	0.004	0.025	0.040	0.028		
29	0.025	0.026	0.025	0.170	0.178	0.170		
30	0.002	0.004	0.003	0.012	0.027	0.020		
31	0.023	0.022	0.023	0.155	0.152	0.157		

32 0.006 0.005 0.002 0.038 0.033 0.015 33 0.002 0.002 0.013 0.014 0.013 34 0.003 0.005 0.004 0.022 0.031 0.031 35 0.012 0.011 0.012 0.081 0.012 36 0.001 0.002 0.002 0.077 0.012 37 0.010 0.011 0.010 0.072 0.077 0.072 38 0.003 0.002 0.002 0.023 0.014 0.016 39 0.001 0.001 0.001 0.008 0.008 0.008 40 0.001 0.002 0.009 0.014 0.016 THD27 1.27% 1.24% 1.35% 23% 13%										
34 0.003 0.005 0.004 0.022 0.031 0.031 35 0.012 0.011 0.012 0.081 0.078 0.081 36 0.001 0.002 0.002 0.007 0.016 0.012 37 0.010 0.011 0.010 0.072 0.077 0.072 38 0.003 0.002 0.002 0.023 0.014 0.016 39 0.001 0.001 0.001 0.008 0.008 0.008 40 0.001 0.002 0.009 0.014 0.016 THD27 1.27% 1.24% 1.35% 23% 13% PWHD28 1.27% 1.24% 1.35% 23% 22% Harmonic At 100% of Registered Capacity Measured Value (MV) in Maps <td rowsp<="" td=""><td>32</td><td>0.006</td><td>0.005</td><td>0.002</td><td>0.038</td><td>0.033</td><td>0.015</td><td></td><td></td></td>	<td>32</td> <td>0.006</td> <td>0.005</td> <td>0.002</td> <td>0.038</td> <td>0.033</td> <td>0.015</td> <td></td> <td></td>	32	0.006	0.005	0.002	0.038	0.033	0.015		
35	33	0.002	0.002	0.002	0.013	0.014	0.013			
36 0.001 0.002 0.002 0.007 0.016 0.012 37 0.010 0.011 0.010 0.072 0.077 0.072 38 0.003 0.002 0.002 0.023 0.014 0.016 39 0.001 0.001 0.002 0.009 0.014 0.016 40 0.001 0.002 0.009 0.014 0.016 THD27 1.27% 1.24% 1.35% 23% 13% PWHD28 1.27% 1.24% 1.35% 23% 22% Harmonic At 100% of Registered Capacity Limit in BS EN 61000-3-12 Measured value (MV) in Marps Limit in BS EN 61000-3-12 1 L1 L2 L3 1 1 3 phase 8% 2 0.075 0.054 0.081 0.518 <t< td=""><td>34</td><td>0.003</td><td>0.005</td><td>0.004</td><td>0.022</td><td>0.031</td><td>0.031</td><td></td><td></td></t<>	34	0.003	0.005	0.004	0.022	0.031	0.031			
37 0.010 0.011 0.010 0.072 0.077 0.072 - - - 38 0.003 0.002 0.002 0.023 0.014 0.016 - - - 39 0.001 0.001 0.002 0.009 0.014 0.016 - - - 40 0.001 0.002 0.009 0.014 0.016 - - - THD ²⁷ 1.27% 1.24% 1.35% 23% 13% PWHD ²⁸ 2.52% 2.60% 2.45% 23% 22% Measured value (MV) in Amps Measured value (MV) in Measur	35	0.012	0.011	0.012	0.081	0.078	0.081			
38 0.003 0.002 0.002 0.023 0.014 0.016 39 0.001 0.001 0.001 0.008 0.008 0.008 40 0.001 0.002 0.009 0.014 0.016 THD ²⁷ 1.27% 1.24% 1.35% 23% 13% PWHD ²⁸ 2.52% 2.60% 2.45% 23% 22% Harmonic At 100% of Registered Capacity Limit in BS EN 61000-3-12 Measured value (MV) in Maps Limit in BS EN 61000-3-12 Measured value (MV) in % Limit in BS EN 61000-3-12 Measured value (MV) in % Limit in BS EN 61000-3-12 Measured value (MV) in % Limit in BS EN 61000-3-12 Not Stated 3 0.011 0.036 0.076 0.145 0.249 21.6% Not Stated 4 0.009 0.009 </td <td>36</td> <td>0.001</td> <td>0.002</td> <td>0.002</td> <td>0.007</td> <td>0.016</td> <td>0.012</td> <td></td> <td></td>	36	0.001	0.002	0.002	0.007	0.016	0.012			
39 0.001 0.001 0.001 0.008 0.008 0.008	37	0.010	0.011	0.010	0.072	0.077	0.072			
40 0.001 0.002 0.002 0.009 0.014 0.016 — — — THD27 — — — 1.27% 1.24% 1.35% 23% 13% PWHD28 — — — 2.52% 2.60% 2.45% 23% 22% Harmonic At 100% of Registered Capacity Measured value (MV) in Measured value (MV) in % L1 L2 L3 L1 L2 L3 1 and phase 3 phase 2 0.075 0.054 0.081 0.518 0.373 0.559 8% 8% 3 0.011 0.021 0.036 0.076 0.145 0.249 21.6% Not stated 4 0.009 0.009 0.021 0.062 0.062 0.145 4% 4% 5 0.174 0.181 0.176 1.202 1.250 1.216 10.7% 10.7% 6 0.006 0.012 0.018	38	0.003	0.002	0.002	0.023	0.014	0.016			
THD27 1.27% 1.24% 1.35% 23% 13% PWHD28 2.52% 2.60% 2.45% 23% 22% Harmonic At 100% of Registered Capacity Measured value (MV) in Measured value (MV) in % Limit in BS EN 61000-3-12 L1 L2 L3 L1 L2 L3 phase 2 0.075 0.054 0.081 0.518 0.373 0.559 8% 8% 3 0.011 0.021 0.036 0.076 0.145 0.249 21.6% Not stated 4 0.009 0.009 0.021 0.062 0.062 0.145 4% 4% 5 0.174 0.181 0.176 1.202 1.250 1.216 10.7% 10.7% 6 0.006 0.012 0.018 0.041 0.083 0.124 2.67% 2.67% 7 0.093 0.093 0	39	0.001	0.001	0.001	0.008	0.008	0.008			
PWHD ²⁸ 2.52% 2.60% 2.45% 23% 22% Harmonic At 100% of Registered Capacity Limit in BS EN 61000-3-12 Measured value (MV) in % Limit in BS EN 61000-3-12 1 1 1 3 phase phase 2 0.075 0.0518 0.373 0.559 8% 8% 8% 3 0.011 0.021 0.036 0.076 0.145 0.249 21.6% Shot stated 4 0.009 0.009 0.021 0.062 0.062 0.145 4% 4% 5 0.174 0.181 0.176 1.202 1.250 1.216 10.7% 10.7% 6 0.006 0.012 0.018 0.041 0.083 0.124 2.67% 2.67% 7 0.093 0.094 0.642 </td <td>40</td> <td>0.001</td> <td>0.002</td> <td>0.002</td> <td>0.009</td> <td>0.014</td> <td>0.016</td> <td></td> <td></td>	40	0.001	0.002	0.002	0.009	0.014	0.016			
Harmonic At 100% of Registered Capacity Limit in BS EN 61000-3-12 Measured value (MV) in Mamps Limit in BS EN 61000-3-12 L1 L2 L3 L1 L2 L3 1 phase phase 2 0.075 0.054 0.081 0.518 0.373 0.559 8% 8% 3 0.011 0.021 0.036 0.076 0.145 0.249 21.6% Not stated 4 0.009 0.009 0.021 0.062 0.062 0.145 4% 4% 5 0.174 0.181 0.176 1.202 1.250 1.216 10.7% 10.7% 6 0.006 0.012 0.018 0.041 0.083 0.124 2.67% 2.67% 7 0.093 0.094 0.642 0.642 0.649 7.2% 7.2% 8 0.006 0.009 0.01 0.041 0.069 0.055 0.076 3.8% Not stated	THD27				1.27%	1.24%	1.35%	23%	13%	
Measured value (MV) in Amps Limit in BS EN 61000-3-12 L1 L2 L3 L1 L2 L3 phase phase 2 0.075 0.054 0.081 0.518 0.373 0.559 8% 8% 3 0.011 0.021 0.036 0.076 0.145 0.249 21.6% Not stated 4 0.009 0.009 0.021 0.062 0.062 0.145 4% 4% 5 0.174 0.181 0.176 1.202 1.250 1.216 10.7% 10.7% 6 0.006 0.012 0.018 0.041 0.083 0.124 2.67% 2.67% 7 0.093 0.094 0.642 0.642 0.649 7.2% 7.2% 8 0.006 0.009 0.01 0.041 0.062 0.069 2% 2% 9 0.01 0.008 0.011 0.069 0.055 0.076 3.8% Not stated <td>PWHD28</td> <td></td> <td></td> <td></td> <td>2.52%</td> <td>2.60%</td> <td>2.45%</td> <td>23%</td> <td>22%</td>	PWHD28				2.52%	2.60%	2.45%	23%	22%	
Measured value (MV) in Measured value (MV) in % L1	Harmonic		At 1	00% of R	egistered (Capacity				
L1 L2 L3 L1 L2 L3 1 phase 3 phase 2 0.075 0.054 0.081 0.518 0.373 0.559 8% 8% 3 0.011 0.021 0.036 0.076 0.145 0.249 21.6% Not stated 4 0.009 0.009 0.021 0.062 0.062 0.145 4% 4% 5 0.174 0.181 0.176 1.202 1.250 1.216 10.7% 10.7% 6 0.006 0.012 0.018 0.041 0.083 0.124 2.67% 2.67% 7 0.093 0.094 0.642 0.642 0.649 7.2% 7.2% 8 0.006 0.009 0.01 0.041 0.062 0.069 2% 2% 9 0.01 0.008 0.011 0.069 0.055 0.076 3.8% Not stated		Measur		(MV) in	Measu	ıred value (MV) in %			
3 0.011 0.021 0.036 0.076 0.145 0.249 21.6% Not stated 4 0.009 0.009 0.021 0.062 0.062 0.145 4% 4% 5 0.174 0.181 0.176 1.202 1.250 1.216 10.7% 10.7% 6 0.006 0.012 0.018 0.041 0.083 0.124 2.67% 2.67% 7 0.093 0.093 0.094 0.642 0.642 0.649 7.2% 7.2% 8 0.006 0.009 0.01 0.041 0.062 0.069 2% 2% 9 0.01 0.008 0.011 0.069 0.055 0.076 3.8% Not stated		L1	L2	L3	L1	L2	L3			
3 0.011 0.021 0.036 0.076 0.145 0.249 21.6% stated 4 0.009 0.009 0.021 0.062 0.062 0.145 4% 4% 5 0.174 0.181 0.176 1.202 1.250 1.216 10.7% 10.7% 6 0.006 0.012 0.018 0.041 0.083 0.124 2.67% 2.67% 7 0.093 0.093 0.094 0.642 0.642 0.649 7.2% 7.2% 8 0.006 0.009 0.01 0.041 0.062 0.069 2% 2% 9 0.01 0.008 0.011 0.069 0.055 0.076 3.8% Not stated	2	0.075	0.054	0.081	0.518	0.373	0.559	8%	8%	
5 0.174 0.181 0.176 1.202 1.250 1.216 10.7% 10.7% 6 0.006 0.012 0.018 0.041 0.083 0.124 2.67% 2.67% 7 0.093 0.093 0.094 0.642 0.642 0.649 7.2% 7.2% 8 0.006 0.009 0.01 0.041 0.062 0.069 2% 2% 9 0.01 0.008 0.011 0.069 0.055 0.076 3.8% Not stated	3	0.011	0.021	0.036	0.076	0.145	0.249	21.6%	l .	
6 0.006 0.012 0.018 0.041 0.083 0.124 2.67% 2.67% 7 0.093 0.093 0.094 0.642 0.642 0.649 7.2% 7.2% 8 0.006 0.009 0.01 0.041 0.062 0.069 2% 2% 9 0.01 0.008 0.011 0.069 0.055 0.076 3.8% Not stated	4	0.009	0.009	0.021	0.062	0.062	0.145	4%	4%	
7 0.093 0.094 0.642 0.642 0.649 7.2% 7.2% 8 0.006 0.009 0.01 0.041 0.062 0.069 2% 2% 9 0.01 0.008 0.011 0.069 0.055 0.076 3.8% Not stated	5	0.174	0.181	0.176	1.202	1.250	1.216	10.7%	10.7%	
8 0.006 0.009 0.01 0.041 0.062 0.069 2% 2% 9 0.01 0.008 0.011 0.069 0.055 0.076 3.8% Not stated	6	0.006	0.012	0.018	0.041	0.083	0.124	2.67%	2.67%	
9 0.01 0.008 0.011 0.069 0.055 0.076 3.8% Not stated	7	0.093	0.093	0.094	0.642	0.642	0.649	7.2%	7.2%	
9 0.01 0.008 0.011 0.069 0.055 0.076 3.8% stated	8	0.006	0.009	0.01	0.041	0.062	0.069	2%	2%	
10 0.005 0.01 0.014 0.035 0.069 0.097 1.6% 1.6%	9	0.01	0.008	0.011	0.069	0.055	0.076	3.8%		
	10	0.005	0.01	0.014	0.035	0.069	0.097	1.6%	1.6%	

²⁷ THD = Total Harmonic Distortion

²⁸ PWHD = Partial Weighted Harmonic Distortion

11	0.08	0.081	0.079	0.553	0.559	0.546	3.1%	3.1%
12	0.007	0.005	0.009	0.048	0.035	0.062	1.33%	1.33%
13	0.064	0.068	0.068	0.442	0.470	0.470	2%	2%
14	0.003	0.002	0.001	0.021	0.014	0.007		
15	0.002	0.002	0.002	0.014	0.014	0.014		
16	0.003	0.004	0.002	0.021	0.028	0.014		
17	0.060	0.061	0.061	0.413	0.420	0.420		
18	0.002	0.004	0.004	0.014	0.028	0.028		
19	0.060	0.060	0.060	0.413	0.413	0.413		
20	0.005	0.005	0.002	0.034	0.034	0.014		
21	0.002	0.002	0.002	0.014	0.014	0.014		
22	0.003	0.006	0.005	0.021	0.041	0.034		
23	0.059	0.058	0.058	0.406	0.399	0.399		
24	0.003	0.004	0.006	0.021	0.028	0.041		
25	0.050	0.053	0.050	0.344	0.365	0.344		
26	0.007	0.005	0.003	0.048	0.034	0.021		
27	0.002	0.002	0.002	0.014	0.014	0.014		
28	0.002	0.005	0.005	0.014	0.034	0.034		
29	0.033	0.034	0.033	0.227	0.234	0.227		
30	0.002	0.003	0.002	0.014	0.021	0.014		
31	0.027	0.027	0.027	0.186	0.186	0.186		
32	0.004	0.003	0.003	0.028	0.021	0.021		
33	0.001	0.002	0.001	0.007	0.014	0.007		
34	0.003	0.004	0.004	0.021	0.028	0.028		
35	0.013	0.012	0.013	0.089	0.083	0.089		
36	0.001	0.002	0.001	0.007	0.014	0.007		
37	0.011	0.011	0.011	0.076	0.076	0.076		
38	0.003	0.002	0.003	0.021	0.014	0.021		

39	0.001	0.001	0.001	0.007	0.007	0.007		
40	0.001	0.002	0.002	0.007	0.014	0.014	-	
THD ²⁹				1.5741	1.6643	1.8652	23%	13%
PWHD30				3.241	3.466	3.754	23%	22%

3. Power Quality - Voltage fluctuations and Flicker:

For **Power Generating Modules** of **Registered Capacity** of less than 75 A per phase (ie 50 kW) these tests should be undertaken in accordance with Annex A.7.1.4.3. Results should be normalised to a standard source impedance, or if this results in figures above the limits set in BS EN 61000-3-11 to a suitable Maximum Impedance.

For **Power Generating Modules** of **Registered Capacity** of greater than 75 A per phase (ie 50 kW) the installation shall be designed in accordance with EREC P28.

The standard test impedance is 0.4 Ω for a single phase **Power Generating Module** (and for a two phase unit in a three phase system) and 0.24 Ω for a three phase **Power Generating Module** (and for a two phase unit in a split phase system). Please ensure that both test and standard impedance are completed on this form. If the test impedance (or the measured impedance) is different to the standard impedance, it must be normalised to the standard impedance as follows (where the **Power Factor** of the generation output is 0.98 or above):

d max normalised value = (Standard impedance / Measured impedance) x Measured value.

Where the **Power Factor** of the output is under 0.98 then the X to R ratio of the test impedance should be close to that of the standard impedance.

The stopping test should be a trip from full load operation.

The duration of these tests needs to comply with the particular requirements set out in the testing notes for the technology under test.

The test date and location must be declared.

Test start date		28.Fe	b.2024	Tes	st end date)	28.Feb.2024			
Test loca	Ginlong Technologies Co., Ltd.									
		Starting			Stopping			Running		
	d max	d c	d(t)	d max	d c	d(t)	P st	P It 2 hours		
Measured Values at	Meas ured Value s at	0.124/ 0.112/ 0.151	0.544/ 0.637/ 0.594	0/0/0	0.131/ 0.122/ 0.146	0.694/ 0.547/ 0.655	0/0/0	0.195/ 0.125/ 0.158		

²⁹ THD = Total Harmonic Distortion

³⁰ PWHD = Partial Weighted Harmonic Distortion

test impedance									
Normalised to standard	0.124/ 0.112/	0.544/ 0.637/	0/0/0	0.131/ 0.122/	0.694/ 0.547/	0/0/0	0.195/ 0.125/	1	.193/ .124/
impedance	0.151	0.594	5. 5. 5	0.146	0.655	G/ G/ G	0.158	0	.155
Normalised to required maximum impedance	N/A	N/A	N/A	N/A	N/A	N/A	N/A	I	N/A
Limits set under BS EN 61000- 3-11	4%	3.3%	3.3%	4%	3.3%	3.3%	1.0		0.65
Test Impedance	R	0.	24	Ω	ΧI		0.15		Ω
Standard Impedance	R	0.24 * 0.4 ^		Ω	XI	0.15 * 0.25 ^			Ω
Maximum Impedance	R		/A	Ω	XI	N/A			Ω

^{*} Applies to three phase and split single phase Power Generating Modules. Delete as appropriate.

4. Power quality – DC injection: The tests should be carried out on a single **Generating Unit**. Tests are to be carried out at three defined power levels ±5%. At 230 V a 20 kW three phase **Inverter** has a current output of 14.49A so DC limit is 36.2 mA. These tests should be undertaken in accordance with Annex A.7.1.4.4.

The % DC injection ("as % of rated AC current" below) is calculated as follows:

% DC injection = Recorded DC value in Amps / Base current

where the base current is the **Registered Capacity** (W) / Vphase. The % DC injection should not be greater than 0.25%.

Test power level	10%	55%	100%
Recorded DC value in mA	22.4/14.6/21.2	26.8/20.7/20.2	24.8/22.7/26.6
as % of rated AC current	0.155/0.101/ 0.146	0.185/0.143/ 0.139	0.171/0.157/ 0.184
Limit	0.25%	0.25%	0.25%

5. Power Factor: The tests should be carried out on a single **Power Generating Module**. Tests are to be carried out at three voltage levels and at **Registered Capacity** and the measured **Power Factor** must be

[^] Applies to single phase **Power Generating Module** and **Power Generating Module**s using two phases on a three phase system. Delete as appropriate.

greater than 0.95 to pass. Voltage to be maintained within ±1.5% of the stated level during the test. These tests should be undertaken in accordance with Annex A.7.1.4.2.

Note that the value of voltage stated in brackets assumes a **LV** connection. This should be adjusted for **HV** as required.

Voltage	0.94 pu (216.2 V)	1 pu (230 V)	1.1 pu (253 V)	
Measured value	Measured value 0.9997		0.9995	
Power Factor Limit	>0.95	>0.95	>0.95	

6. Protection – Frequency tests: These tests should be carried out in accordance with the Annex A.7.1.2.3. For trip tests, frequency and time delay should be stated. For "no trip tests", "no trip" can be stated.

Function	Setting		Trip test		"No trip tests"	
	Frequency	Time delay	Frequency	Time delay	Frequency /time	Confirm no trip
U/F stage 1	47.5 Hz	20 s	47.52Hz	20.03s	47.7 Hz 30 s	Yes
U/F stage 2	47 Hz	0.5 s	47.02Hz	0.526s	47.2 Hz 19.5 s	Yes
					46.8 Hz 0.45 s	Yes
O/F	52 Hz	0.5 s	51.98Hz	0.524s	51.8 Hz 120.0 s	Yes
					52.2 Hz 0.45 s	Yes

Note. For frequency trip tests the frequency required to trip is the setting \pm 0.1 Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting \pm 0.2 Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

7. Protection – Voltage tests: These tests should be carried out in accordance with Annex A.7.1.2.2. For trip tests, voltage and time delay should be stated. For "no trip tests", "no trip" can be stated.

Note that the value of voltage stated below assumes a **LV** connection This should be adjusted for **HV** taking account of the VT ratio as required.

Function	Setting		Trip test		"No trip tests"	
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip
U/V	0.8 pu (184 V)	2.5 s	184.7V	2.52s	188 V 5.0 s	Yes

					180 V 2.45 s	Yes
O/V stage 1	1.14 pu (262.2 V)	1.0 s	262.6V	1.021s	258.2 V 5.0 s	Yes
O/V stage 2	1.19 pu (273.7 V)	0.5 s	273.5V	0.529s	269.7 V 0.95 s	Yes
					277.7 V 0.45 s	Yes

Note for Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

8.Protection – Loss of Mains test: These tests should be carried out in accordance with BS EN 62116. Annex A.7.1.2.4.

The following sub set of tests should be recorded in the following table.

Test Power and	33% -5% Q	66% -5% Q	100% -5% P	33% +5% Q	66% +5% Q	100% +5% P
imbalance	Test 22	Test 12	Test 5	Test 31	Test 21	Test 10
Trip time. Limit is 0.5s ³¹	0.373	0.254	0.252	0.370	0.283	0.236

Loss of Mains Protection, Vector Shift Stability test: This test should be carried out in accordance with Annex A.7.1.2.6. Confirmation is required that the **Power Generating Module** does not trip under positive / negative vector shift.

	Start Frequency	Change	Confirm no trip
Positive Vector Shift	49.5Hz	+50 degrees	Yes
Negative Vector Shift	50.5Hz	- 50 degrees	Yes

³¹ If the device requires additional shut down time (beyond 0.5 s but less than 1 s) then this should be stated on this form.

Loss of Mains Protection, RoCoF Stability test: This test should be carried out in accordance with Annex

A.7.1.2.6. Confirmation is required that the **Power Generating Module** does not trip for the duration of the ramp up and ramp down test.

Ramp range	Test frequency ramp:	Test Duration	Confirm no trip
49.0 Hz to 51.0 Hz	+0.95 Hzs ⁻¹	2.1 s	Yes
51.0 Hz to 49.0 Hz	-0.95 Hzs ⁻¹	2.1 s	Yes

9. Limited Frequency Sensitive Mode – Overfrequency test: The test should be carried out using the specific threshold frequency of 50.4 Hz and **Droop** of 10%.

This test should be carried out in accordance with Annex A.7.1.3, which also contains the measurement tolerances.

Active Power response to rising frequency/time plots are attached if frequency injection tests are undertaken in accordance with Annex A.7.2.4.

Yes

Alternatively, test results should be noted below:

Test sequence at Registered Capacity >80%	Measured Active Power Output	Frequency	Primary Power Source	Active Power Gradient
Step a) 50.00Hz ±0.01Hz	10003W	50.00Hz		-
Step b) 50.45Hz ±0.05Hz	9897W	50.45Hz		-
Step c) 50.70Hz ±0.10Hz	9409W	50.70Hz		-
Step d) 51.15Hz ±0.05Hz	8506W	51.15Hz	10419W	-
Step e) 50.70Hz ±0.10Hz	9408W	50.70Hz		-
Step f) 50.45Hz ±0.05Hz	9900W	50.45Hz		-
Step g) 50.00Hz ±0.01Hz	10000W	50.00Hz		60kW/min
Test sequence at Registered Capacity 40% - 60%	Measured Active Power Output	Frequency	Primary Power Source	Active Power Gradient
Step a) 50.00Hz ±0.01Hz	5001W	50.00Hz		-
Step b) 50.45Hz ±0.05Hz	4909W	50.45Hz		-

Step c) 50.70Hz ±0.10Hz	4407W	50.70Hz		-
Step d) 51.15Hz ±0.05Hz	3506W	51.15Hz	5208W	-
Step e) 50.70Hz ±0.10Hz	4406W	50.70Hz		-
Step f) 50.45Hz ±0.05Hz	4907W	50.45Hz		
Step g) 50.00Hz ±0.01Hz	5000W	50.00Hz		60kW/min

10. Protection - Re-connection timer

Test should prove that the reconnection sequence starts after a minimum delay of 20 s for restoration of voltage and frequency to within the stage 1 settings of Table 10.1. Both the time delay setting and the measured delay should be provided in this form; both should be greater than 20 s to pass. Confirmation should be provided that the **Power Generating Module** does not reconnect at the voltage and frequency settings below; a statement of "no reconnection" can be made.

Time delay setting	Measured delay	Checks on no reconnection when voltage or frequency is brought to just outside stage 1 limits of Table 10.1.			
30s	41s	At 1.16 pu (266.2 V LV connection, 127.6 V HV connection assuming 110 V ph-ph VT)	At 0.78 pu (180.0 V LV connection, 85.8 V HV connection assuming 110 V ph-ph VT)	At 47.4 Hz	At 52.1 Hz
Confirmation that the Power Generating Module does not re-connect.		Yes	Yes	Yes	Yes

11. Fault level contribution: These tests shall be carried out in accordance with EREC G99 Annex A.7.1.5. Please complete each entry, even if the contribution to the fault level is zero.

For Inverter output					
Volts	Amps				
52.8V	23.46A				
47.5V	0				
38.2V	0				
34.2V	0				
0.062s	In seconds				
	Volts 52.8V 47.5V 38.2V 34.2V				

12. Self-Monitoring solid state switching: No specified test requirements. Refer to Annex A.7.1.6.	
It has been verified that in the event of the solid state switching device failing to disconnect the Power Park Module , the voltage on the output side of the switching device is reduced to a value below 50 volts within 0.5 s.	N/A (Solid state switch means electronic switch, Solis inverter uses mechanical dual relay protection with relay checks, which drops the voltag below 50V in 0.5s)
13. Wiring functional tests: If required by para 15.2.1.	
Confirm that the relevant test schedule is attached (tests to be undertaken at time of commissioning)	N/A (Not applicable. Refer to 15.2.1 inverter is using special connector fo wiring)
14. Logic interface (input port)	
Confirm that an input port is provided and can be used to shut down the module	Yes. (Logic interface is marked as "DRM" on inverter. Please see inverte manual part 4.7.5 for detail.)
Provide high level description of logic interface, e.g. details in 11.1.3.1 such as AC or DC signal (the additional comments box below can be used)	Yes. (Logic interface marked "DRM" on inverter which can be operated be a simple switch or contactor. When the switch is closed the inverter can operated normally. When the switch opened, the inverter will reduce it's output power to zero within 5s. The signal from the inverter that is being switched is DC about 10 V.)
15. Cyber security	
Confirm that the Power Generating Module has been designed to comply with cyber security requirements, as detailed in 9.1.7.	Yes(The inverter can work with S2- WL-ST data logger to meet the requirements of ENSI EN 303645)
Additional comments.	
The test result is based on S6-EH3P10K-H-EU. All the series of inverters electrical character are the same. So the test result can cover all other models.	